Deepseek reasoning 对话格式(类Chat Completions)¶
📝 简介¶
Deepseek-reasoner 是 DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。API 向用户开放 deepseek-reasoner 思维链的内容,以供用户查看、展示、蒸馏使用。
💡 请求示例¶
基础文本对话 ✅¶
curl https://api.deepseek.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $NEWAPI_API_KEY" \
-d '{
"model": "deepseek-reasoner",
"messages": [
{
"role": "user",
"content": "9.11 and 9.8, which is greater?"
}
],
"max_tokens": 4096
}'
响应示例:
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "deepseek-reasoner",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"reasoning_content": "让我一步步思考:\n1. 我们需要比较9.11和9.8的大小\n2. 两个数都是小数,我们可以直接比较\n3. 9.8 = 9.80\n4. 9.11 < 9.80\n5. 所以9.8更大",
"content": "9.8 is greater than 9.11."
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 15,
"total_tokens": 25
}
}
流式响应 ✅¶
curl https://api.deepseek.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $NEWAPI_API_KEY" \
-d '{
"model": "deepseek-reasoner",
"messages": [
{
"role": "user",
"content": "9.11 and 9.8, which is greater?"
}
],
"stream": true
}'
流式响应示例:
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"role":"assistant","reasoning_content":"让我"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"reasoning_content":"一步步"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"reasoning_content":"思考:"},"finish_reason":null}]}
// ... 更多思维链内容 ...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"content":"9.8"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{"content":" is greater"},"finish_reason":null}]}
// ... 更多最终答案内容 ...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"deepseek-reasoner","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}
📮 请求¶
端点¶
鉴权方法¶
在请求头中包含以下内容进行 API 密钥认证:
其中 $DEEPSEEK_API_KEY
是您的 API 密钥。
请求体参数¶
messages
¶
- 类型:数组
- 必需:是
到目前为止包含对话的消息列表。请注意,如果您在输入的 messages 序列中传入了 reasoning_content,API 会返回 400 错误。
model
¶
- 类型:字符串
- 必需:是
- 值:deepseek-reasoner
要使用的模型 ID。目前仅支持 deepseek-reasoner。
max_tokens
¶
- 类型:整数
- 必需:否
- 默认值:4096
- 最大值:8192
最终回答的最大长度(不含思维链输出)。请注意,思维链的输出最多可以达到 32K tokens。
stream
¶
- 类型:布尔值
- 必需:否
- 默认值:false
是否使用流式响应。
不支持的参数¶
以下参数当前不支持:
- temperature
- top_p
- presence_penalty
- frequency_penalty
- logprobs
- top_logprobs
注意:为了兼容已有软件,设置 temperature、top_p、presence_penalty、frequency_penalty 参数不会报错,但也不会生效。设置 logprobs、top_logprobs 会报错。
支持的功能¶
- 对话补全
- 对话前缀续写 (Beta)
不支持的功能¶
- Function Call
- Json Output
- FIM 补全 (Beta)
📥 响应¶
成功响应¶
返回一个聊天补全对象,如果请求被流式传输,则返回聊天补全块对象的流式序列。
id
¶
- 类型:字符串
- 说明:响应的唯一标识符
object
¶
- 类型:字符串
- 说明:对象类型,值为 "chat.completion"
created
¶
- 类型:整数
- 说明:响应创建时间戳
model
¶
- 类型:字符串
- 说明:使用的模型名称,值为 "deepseek-reasoner"
choices
¶
- 类型:数组
- 说明:包含生成的回复选项
- 属性:
index
: 选项索引message
: 包含角色、思维链内容和最终回答的消息对象role
: 角色,值为 "assistant"reasoning_content
: 思维链内容content
: 最终回答内容
finish_reason
: 完成原因
usage
¶
- 类型:对象
- 说明:token 使用统计
- 属性:
prompt_tokens
: 提示使用的 token 数completion_tokens
: 补全使用的 token 数total_tokens
: 总 token 数
📝 上下文拼接说明¶
在每一轮对话过程中,模型会输出思维链内容(reasoning_content)和最终回答(content)。在下一轮对话中,之前轮输出的思维链内容不会被拼接到上下文中,如下图所示:
注意
如果您在输入的 messages 序列中,传入了reasoning_content,API 会返回 400 错误。因此,请删除 API 响应中的 reasoning_content 字段,再发起 API 请求,方法如下方使用示例所示。
使用示例:
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
# 第一轮对话
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages
)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
# 第二轮对话 - 只拼接最终回答content
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages
)
流式响应示例:
# 第一轮对话
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages,
stream=True
)
reasoning_content = ""
content = ""
for chunk in response:
if chunk.choices[0].delta.reasoning_content:
reasoning_content += chunk.choices[0].delta.reasoning_content
else:
content += chunk.choices[0].delta.content
# 第二轮对话 - 只拼接最终回答content
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages,
stream=True
)